Forscher der Johannes Gutenberg-Universität Mainz entwickeln neues Verfahren zur magnetischen Aufzeichnung / Veröffentlichung in Nature Nanotechnology
04.03.2014
Die Forschungsgruppe von Univ.-Prof. Dr. Jairo Sinova am Institut für Physik der Johannes Gutenberg-Universität Mainz (JGU) hat in Zusammenarbeit mit Wissenschaftlern aus Prag, Cambridge und Nottingham ein neuartiges physikalisches Phänomen vorhergesagt und entdeckt, das es ermöglicht, den Zustand eines Magneten durch elektrische Impulse zu beeinflussen. Die aktuellen Technologien zur Aufzeichnung, Speicherung und Wiedergabe von Informationen sind entweder ladungs- oder spinbasiert. Dabei stellen die auf der Halbleitertechnik basierenden Flash- oder Direktzugriffsspeicher Paradebeispiele aus der großen Vielfalt ladungsbasierter Geräte dar. Diese Geräte nutzen die Möglichkeit, die aus den Werten „0“ und „1“ bestehenden elektronischen Ladezustände von Halbleitern auf einfache Weise elektrisch zu beeinflussen und zu erfassen. Der Nachteil hierbei liegt darin, dass bereits schwache Störeinflüsse wie Verunreinigungen, Temperaturschwankungen oder Strahlung zu unkontrollierten Ladungsumverteilungen und in der Folge zu Datenverlust führen können. Spinbasierte Verfahren arbeiten nach einem völlig anderen Prinzip. Bei manchen Materialien, wie etwa Eisen, erzeugen die Elektronenspins Magnetismus, wodurch die Position des Nord- und Südpols am Magneten zur Speicherung der 0- und 1-Werte genutzt werden kann. Genau diese Technologie steckt hinter Speicheranwendungen, die von Kilobyte-Magnetstreifenkarten bis zu Terabyte-Computerfestplatten reichen. Da in diesen Medien die Speicherung spinbasiert erfolgt, sind sie weit weniger anfällig für Ladestörungen. Der Nachteil der derzeit existierenden Magnetspeicher besteht allerdings darin, dass das magnetische Bit an einen Elektro- oder anderen Permanentmagneten gekoppelt sein muss, um Nord- und Südpol des Magneten miteinander zu vertauschen, um also von „0“ auf „1“ zu wechseln und umgekehrt. Wenn die Pole aber nun durch ein elektrisches Signal ohne den Einsatz eines anderen Magneten vertauscht werden könnten, wäre der Weg frei für eine völlig neuartige Generation von Speichermedien, die die Vorzüge der ladungsbasierten und der spinbasierten Medien ineinander vereint.
Um einen Magneten ohne einen zusätzlichen Elektro- oder anderen Permanentmagneten auf elektrischem Wege zu erschüttern, muss man den Bereich der klassischen Physik verlassen und sich in die relativistische Quantenmechanik hineinbegeben. In Einsteins Relativitätstheorie können Elektronen unter dem Einfluss elektrischen Stroms ihre Spins so ausrichten, dass sie magnetisch werden. Die Mainzer Forscher verwendeten einen GaMnAs-Permanentmagneten, legten in dessen Innerem einen elektrischen Strom an und erzeugten so eine neue interne Magnetwolke, durch die der sie umgebende Permanentmagnet beeinflusst werden kann. Die Arbeit wurde in der Ausgabe der Zeitschrift Nature Nanotechnology vom 2. März 2014 veröffentlicht.
Das beobachtete Phänomen ist eng mit dem relativistischen intrinsischen Spin-Hall-Effekt verwandt, den Jörg Wunderlich, Jairo Sinova und Tomas Jungwirth im Jahr 2004 entdeckten, nachdem er von Sinova und Forscherkollegen 2003 vorhergesagt worden war. Seitdem lässt sich anhand dieses Phänomens lehrbuchmäßig erläutern, wie jedes Material durch elektrische Ströme magnetisiert werden kann. „Vor zehn Jahren haben wir vorhergesagt und entdeckt, wie elektrische Ströme durch die intrinsischen Strukturen von Materialien reine Spinströme erzeugen können. Nun haben wir nachgewiesen, dass dieser Effekt umgekehrt werden kann, um Magnete mithilfe einer strominduzierten Polarisation zu beeinflussen“, erklärt Univ.-Prof. Dr. Jairo Sinova. „Diese neuartigen Phänomene bilden heute einen wichtigen Forschungsschwerpunkt, da sich daraus eine neue Generation von Speichermedien ergeben könnte. Neben unseren laufenden Kooperationen fügt sich diese Forschungsrichtung hervorragend in die aktuelle experimentelle Forschung an der Johannes Gutenberg-Universität Mainz ein. Es ist für mich ein großes Privileg, Teil dieser weltweit führenden Forschung zu sein und mit herausragenden Kollegen zusammenarbeiten zu dürfen. Ich bin schon jetzt ganz begeistert von den Möglichkeiten, die uns die Zukunft in diesem Bereich bietet.“