Durchbruch für Informationstechnologie auf Basis von Heusler-Materialien

Grundlage für künftige Entwicklung extrem leistungsfähiger Spintronik-Bauteile / Veröffentlichung in Nature Communications

10.06.2014

Es ist ein Durchbruch, auf den Physiker und Chemiker weltweit lange gehofft hatten und der die Informationstechnologie in den nächsten Jahren maßgeblich beeinflussen dürfte: Wissenschaftlern der Johannes Gutenberg-Universität Mainz (JGU) ist es zum ersten Mal gelungen, die hundertprozentige Spinpolarisation einer Heusler-Verbindung direkt zu beobachten. Heusler-Materialien bestehen aus mehreren metallischen Elementen in einer Gitterstruktur. Sie zählen zu den Kandidaten für neue Werkstoffe, um noch kleinere Datenspeicher mit noch höheren Speicherdichten zu bauen. In den letzten Jahren waren allerdings Zweifel aufgekommen, ob Heusler-Materialien diese Erwartungen tatsächlich erfüllen würden. Physiker der JGU konnten nun zeigen, dass sich für die Heusler-Verbindung Co2MnSi die erforderlichen elektronischen Eigenschaften nachweisen lassen. Die Studie wurde in Zusammenarbeit mit theoretischen Physikern und Chemikern der Ludwig-Maximilians-Universität München (LMU) und des Max-Planck-Instituts für Chemische Physik fester Stoffe (MPI-CPfS) in Dresden erstellt und im Online-Wissenschaftsjournal Nature Communications publiziert. Die Beobachtungen legen den Grundstein für die künftige Entwicklung außerordentlich leistungsfähiger Bauteile in der Spintronik auf Basis von Heusler-Materialien. Anwendungen ergeben sich zum Beispiel für Festplatten-Leseköpfe oder für nichtflüchtige Speicherelemente.

Elektronen sind die Ladungsträger in Metallen und Halbleitern. Sie besitzen aber nicht nur eine Ladung, die für die konventionelle Elektronik entscheidend ist, sondern auch ein magnetisches Moment, den Spin, vorstellbar als eine Art Eigendrehung des Elektrons um die eigene Achse. Spinbasierte Elektronik, auch Spintronik genannt, wird allgemein als Informationstechnologie der Zukunft angesehen, für deren optimale Leistungsfähigkeit allerdings neuartige Materialien erforderlich sind.

Eine entscheidende Größe ist dabei die Spinpolarisation, das heißt der Grad der parallelen Ausrichtung der am Ladungstransport beteiligten Spins. Das Wunschmaterial sollte eine möglichst hohe Spinpolarisation aufweisen, also möglichst viele Elektronen sollen sich in die gleiche Richtung ausrichten.

Den Mainzer Physikern ist nun der erste direkte experimentelle Nachweis einer nahezu vollständigen Spinpolarisation bei Raumtemperatur für die intermetallische Heusler-Verbindung Co2MnSi gelungen. "Es wird schon lange über diese Materialklasse geforscht und es gibt viele theoretische Hinweise auf die elektronischen Eigenschaften der Heusler-Verbindungen, aber bisher konnte kein einziges Experiment eine hundertprozentige Spinpolarisation bei Raumtemperatur bestätigen", erklärt PD Dr. Martin Jourdan von der JGU, Erstautor der Studie. Für sehr tiefe Temperaturen von minus 269 Grad Celsius hatten sich entsprechende Hinweise schon erhärtet. Entscheidend für die spätere praktische Anwendung ist außerdem ein weiterer Befund, den die Wissenschaftler an der Verbindung Co2MnSi – bestehend aus Kobalt, Mangan und Silicium – nachgewiesen haben, nämlich dass die hohe Spinpolarisation an der Oberfläche des Materials auftritt.

Prof. Dr. Claudia Felser, die das Forschungsfeld der halbmetallischen Heusler-Materialien vor 15 Jahren etabliert hat, sieht diese Arbeit als einen lang erhofften Durchbruch an. "Endlich gelang der direkte experimentelle Nachweis der hundertprozentigen Spinpolarisation, ein wichtiger Meilenstein in Richtung neuer Spintronik-Devices", so Felser, Direktorin am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden.

Der erfolgreiche Nachweis beruht auf einer außerordentlich präzisen Herstellung der Probe. Dazu muss in der Kristallstruktur der Heusler-Verbindung eine perfekte atomare Ordnung erreicht werden. Dieser besonders hohe Ordnungsgrad genau an der Oberfläche des Materials wird in Mainz mithilfe der Dünnschichtpräparation in einer Ultrahochvakuumkammer erzeugt. Die Spinpolarisation wird dann mit Photoelektronenspektroskopie gemessen und konnte in Zusammenarbeit mit Theoretikern der LMU und des MPI-CPfS durch eine besondere Kombination von Volumen und Oberflächeneigenschaften der Verbindung erklärt werden.

"Dies ist nicht nur ein Durchbruch bei der Suche nach neuen Materialien für die Spintronik, sondern auch im Hinblick auf die Kooperation zwischen Theorie und Experiment", so Jourdan. "Wir konnten zeigen, dass perfekt hergestellte Materialien auch tatsächlich die Eigenschaften besitzen, die theoretisch vorhergesagt werden." Heusler-Materialien werden weltweit, insbesondere aber in Japan, Deutschland und den USA beforscht. An der Johannes Gutenberg-Universität Mainz bilden sie einen Forschungsschwerpunkt im Rahmen der materialwissenschaftlichen Verbünde MAINZ (Exzellenz-Graduiertenschule Materials Science in Mainz) und CINEMA (Center for Innovative and Emerging Materials).

Bei der aktuellen Studie steuerten die LMU-Physikochemiker PD Dr. Jan Minar, apl. Prof. Dr. Jürgen Braun und Prof. Dr. Hubert Ebert das theoretische Rüstzeug bei. "Die spektroskopischen Berechnungen wurden im Rahmen des sogenannten Einstufenmodells durchgeführt", so Minar aus der Gruppe von Prof. Dr. Hubert Ebert, in der das zugrundeliegende Programm entwickelt wurde. "Eine derartige Kombination aus elektronischer Strukturrechnung und theoretischer Photoemission erlaubt einen direkten Vergleich mit den entsprechenden experimentellen Daten, was wiederum wesentlich zum Verständnis der gemessenen hundertprozentigen Spinpolarisation beiträgt."